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Abstract

In this paper we analyze inviscid aerodynamic shape optimJza, tion problems gov-

erned by the full potential and the Euler equatiofis in two and three dimensions. ".i'he

analysis indicates that. minimization of pressure dependent cost functions results in

Hessians whose eigenvalue distributions are identical for the full potential and _he E,u-

ler equatioz_s. However, the optimization problems in two and three dimensions are
inherently different. While the two dhnensional optimization problems are well-posed.

the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest

scale allowed by the de._ign space can develop in the direction perpendicular to the flow,

implying that a regularization is required. A natural choice of such a regulariza.tion is
derived. The analysis also gives an es'dmate of the Hessian's condition number which

implies that the problems at hand are ill-conditioned. Infinite dimensional approxima-
tions for the Hessians are constructed and preconditioners for gradient based methods

are derived from these approximate Hessians.

"This re',earch wa.,_supported by the National Aeronautics and Space Administration under b'ASA Con-
tract No. NAS1-19480 while the authors were in residence 'at the Institute for Computer Applications in
Science and Engineering (ICASE_, Mail Stop 132C, NASA bangle: P_areh Center. Hampton, VA 23681-
0001.
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1 Introduction

In recent years there has been a growing interest in solving optimization problems governed

by the Euler and the Navier Stokes equations [1_-[9]. The new interest in this classical tield

110, 11] is due to the increase in computer's speed and improvements in algorithms for the

numerical solution of t,he flow equations.

The problem of designing a three-dimensional wing requires solving an optimization prob-

lem with many design parameters. Such a problem may be eomputationally difficult depend-

ing on the cost function's level curves in the vicinity of the minimum. A measure for the

level of difficult3' is the condil;ion number of the Hessian. The eigenvalues of the Hessian

(which is a symmetric operator) are the curvatures of the cost function in the principal di-

rections. A large deviation in the eigenvalues means that the cost fimction has level curves

which are thin ellipses. This is well known in the optimization literature to cause slowness

of convergence toward *,he minimum for gradient-based methods [12].

Aerodynamic optimization problems are ill-conditioned as noted in [6, 9_, and as will

be shown in this paper. Therefore gradient descent methods will be ext.remely inefficient

especially whe_ the number of design variables is large. A standard method to overcome this

difficult3" is the Newton meghod where the Hessian is computed explicitly I12]. The Newton

search direction is the gradient multiplied by the Hessian's inverse, a computation which is

impractical in ae.rodynamic optimization problems sinoe it invo]ves numerous solutions of

the flow PDEs. On the other hand Jsing low rank quasi-Newton methods, such as BFGS

[3, 4]. will result in a deteriorate cor_ "ergence as the number of design variables increases.

I'hus. a new method is required.

Another difficulty in inviscid aerodynart." optimization problems is the ill-posedness

of three dimensional problems which shows up _s small scale oscillations in the shape in

the direction perpendicular to the flow. Such oscillations were observed in applications as

reported iI_ [9]. One way to _x,oid these oscillations is to apply smooth finite dimensional

repre.sentation of the shape in the spanwise direction. Another approach is regularization

by introduction of a penalty to the cost function for oscillations in thgt, direction. The

need for penalizing the cost function in order to remove oscillations was observed by [.3]
However, in that ca.qe the oscillations were a result of the discretization and had no differential

counterpart. Penalization was used also in l;wo dimensions where the differential optimization

problem is well-posed.

In this paper we develop a ze_ approach to appro_:imate the Hessian and its inverse for

optimization problems governed by PDEs. Hessian symbols were previously computed f_.r

smoothing predictions in the development of multigrid one-shot methods [13]-[16]. Ilere, a

similar analysis is applied to inviscid flow problems including the full potential and Euler

equations in two and in three space dimensions. In See.2 the optimization problem is defined

together with its small disturbance approximation. The necessary conditions for a minimum

and t_heir relation with the Hessian are discussed also in the finige dimensional design space.

In See.3 local mode analysis is presented to approximate the tlessian's symbol The .malysis

is local _d. involves freezing the coefficients to obtain a problem in laalf space with constant

coef, q.cients, where Fourier techniques are employed, In Sec. 4 the analysis is applied to an

optimal shape design problem governed by the full potential equation. In Sec..5 the analysis

is applied to the Euler equations, and a _ymbo] is obtained identical to the full potential

.... .... - .............. ii I
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case. In Sec- 6 the Hessian's symbol is analyzed and conclusions axe made concerning the illo

conditioning and ill-posedness of the problems at hand. In Sec. 7 regularization is discussed

to avoid the ill-posedness which exists in three dimensions in the spanwise direction. In See.8

preconditioners are developed for the small disturbance and _he optimal shape problems in

subsonic and supersonic flow. Finally in Sec. 9 discussion and concluding remarks are made.

2 The Optimization Problem

A typical inviscid aerodynamic optimal shape design problem aims at finding the shape of

a surface, e.g., airfoil or wing, such that the resulting pressure distributiol, on that surface

will minirnize the least squares distance from a prescribed pressure distribution. Let f/ be

a domain ia _ and F(z) a parametric representation of the part of the bomldary o_f_ to

be designed. 'l'he optimal shape problem is to compute the boundery position, F. that

minimiz_ a cost function defined on F, e.g.,

where f is a prescribed function and U is the solution of a PDE defined on ft,

c(r. u) = 0.

2.1 The Small Disturbance Approximation

For the analysis of the Hessian it is enough to consider small perturbations of the boundary

I'. In order to further simplify the derivation we consider a localization of the problem in a

vicinity of a boundary point and study the resulting half space problem. Let us introduce

the following notation

We consider perturbations of the form

• F = F" -t- e&_

U = U" + el' + O(e2)

= 0}. (2.2)

where F" and U" are the optima] boundary shape and state solution respectively; ff is the

outward normal and ,,:is a sufficiently small positive number. The resulting optimal control
problem is obtained using a Taylor expansion in ¢ and is discussed in more details in the

next _.'ctions. The new control problem, for the control variable 5, is defined in half space

and is referred as the "small disturbance minimization problem", namely,

r,

subject to the following state equation:

gfz = 0

sO = c_

_',nF(a, _) (2.5)

o, _ (2.71
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and additional homogeneous conditions on the solution at infinity. For this control problem

the minimum is attained for 5 - 0.

The necessary conditions for a minimum of the small disturbance problem are given

by the state equation Eq.(2.6-Z7) and two additional equations: design and costate. The

_ation is a PDE defined on the boundary c9_, and is denoted by,

A(_,A,a) = 0 o,, an_. (2.s)

where U is the solution of the state equation (2.6-2:7) and A is the solution of the costa/e-

equation, i.e.,

LA = 0 on_3 (2.9)+

gA = C_ on a_ (2.10)

and additional homogeneous conditions at infinity.

We _sume that the perturbation 5 is composed of high frequencies and compute the

resulting solutions, b' and A, in the vicinity of some arbitrary point on the boundary 0_.

The solution there is approximated by a constant coefficient problem defined in half space

where Fourier analyst can be applied.

It can be show,,', that for feasible solutions of the state and cost_te equation_. _' = (_(5)

and A = A(_'(5))., the design equation residuals axe equal to the gradient of the cx)st funclion

with r_.pect !_, the design variables:

sj(a,(:(_)) = A(O(a), A(0(g_)),6). (_.t_)

In the vicimo, ,he minimum the following relation holds

g(5./_'(5)) - g(O,O) + H5 + h.o.t. (2.12)

where we denete by H the Hessian, i.e..

H = Wag(0: 0).

A Taylor expansion of the right hand side in (2.11) and comparison with (2.12) results in

H = Ao(:_,+ AA.,'_c(A+ A_. (2.i3,

The dimension of the itessian, H, is determined by the dimension of _,he design variable. 5.

If 5 belong to a finite dimensional space of dimension N then the gradient is a vector of size

N and the Hessian is a N × N matrix. If dr belongs to an infinite dimensional space (e.g.,

some function space) then the gradient is an element in an infinite dimensional space and

the Hessian is an infinite dimensional operator. "l'he Newton step, 5, satisfies

n5 = -a (2.14)

where g is the gradient at the given iteration.
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2.2 Finite Dimensional Design Space

In applications it is a common practice to restrict the design space to a finite dimensional

subspace where the shape F. or in the small disturbance model 5, is given as

N

5(s) = __, d, fj(s). (2.15)

where N is the dimension of the design space, aj are the design variables and f_ are fixed

basis functions. The gradient for the finite dimensional case, ff = (#l°'", g,v), is obtained

by a projection of the infinite dimensional one onto on the finite dimensional space, i.e.,

•]y=b (2.16)

where J is a matrix defined _"

Jij = (fi(s),fj(S))L 2 i..j -- 1.... ;N, (2.1"/')

and the right hand side, b, is a vector whose elements are given by

b_(._)= (g(_),h(s))t_ k = 1.-.. ,N.

Let h)_ be an element in the matrix representing the Hessian using the basis functions fj:

hjk .= (Hfj, re)r). (2.18)

A Newton step for minimizing the cost function consists of moving in the direction (_ ----

(&_,.", &,v) given by:

bg = -b. (2.19)

Note thai this equation is obtained by projecting the general equation (2.14) onto a finite

dimensional space spanned bv J f _,V
(. J J J-l"

3 Local Mode Analysis

A local analysis of the operator H is done next. The Fourier analysis consists of aaalyzing
the solution of the following system of equations in half space:

_" ' '12

LU = 0 on _+ (3.1)
L

BU=C5 on_ + (3.2)

= _. (3.3)

A(U,_,5) = 0 o,,8_+, (3..5)

4



wherewereplaced_7by U to account for cases in which L stands for a system of PDEs.

The computation of the symbol of the ttessian. (2.13), near the minimum is done by

considering a perturbation in the design variable of lhe form

al_) = a(_-)fi_ (3.6)

and calculating the corresponding term H& The small disturbance solution U can be rep-

resented as

(_(.L z_) = _,Sj(k)Vi([c)e'kre °4_", (3.7)
j--.1

where q equals the number of boundary conditions in (3.2J.

expr_sion for U satisfies the equation

L_Ak)d_e '_;_"= 6.

Each of the terms in the

(3.8)

which implies

• J •Z(k.k.)v_(#) = 6. (3.9)

where L(_', k_,) is the symbol of L. Moreover, Eq.(3.9) implies that for j = l...q,

det L(_,k_) = 0 (3.1o)

r,_) with a zero eigenvalue. Substituting the expres-and t.hat Vj(k) is an eigenvector of L(k, ' j
2,

sion for U into the boundary condition (3.2) results in the following equation,

where/3(k, k_) is the symbol of B. and 6'(k) is _he symbol of C. Introducing the matrix

and the vector

F_,q.(3.11) ('an be written as

or, equivalently, as

_u,,'l,,- /_-'

(.3.12)

(3.13)

where U(k) i:- defined by

_"(_.o)= _(_)_(;)_'_".__(_.)d_"

5

......... r i , i , i i
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and where 1)'(_') is the matrix _'= (_1(_:), .... _q(k)).

The adjoint equations a.re treated ill a similar way. The solution A is represented by

_ 2, ._ ';° .,P "r)

A(.;c.',x,)- _ _j(k)Ej(k)e'_"e""_" (3.14)
j_-.!

where q + q = N and N is the degree of the polynomial in (3.10). Let _'¢, be the roots of

det _.,(_', _'_) = 0 (3.1.5)

and =j the eigenvectors of L(_'. l,-_) corresponding to a zero eigenvalue. The costate boundary

condition (3.t)implies

.*=1

Introdacing the matrix

and the vector

Eq.(3.16) can be written as

or, equivalently, as

w(_-)a(k) = C(k)U(k), (3.17)

A(k)= _.(k)w (_)c(_)v(_),

where __([) is the matrix _(f¢) = (_,(k),..., "--'_(k)).

(3.18)

Substitution of (3.13) and (3.18) in the symbol of the Hessian's expression (2.13) results

in the following formula for the Hessian's symbol:

_(_,) = Ac,f:#-_4: + A^-w cvw-_c + A_. (3.]9)

4 The Full Potential Equation

In this section we apply the ideas discussed above to minimization problems governed by the

full potential equation. We consider the problem of optimizing the shape of an aerodynamics
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configuration so that the shape minimizes the deviation of the pressure from a, target pressure
distribution, namely.

subject to

rn_n .F(F, p) - _r (p - p')_da (4.1)

£(F, o) - div(p_' ¢) = 0 on fl (4.2)

¢, = 0 on F (4.3)

and an additional boundary condition at the far-field (the notation 0,, stands for the outer

normal derivative of 4) on the boundary).

The density, p, is given by the i,lent, ropic density law [17!:

= [1 (v_)_! _
p_, 2H:,¢ , (4.4)

with 7 the specific heat ratio and p_¢ and H_ the values of the density and total enthalpy

at infinity.

The pressure, p, is related to the density p and the sp_d of sound, c, by

pc 2
p ------, (4...5)

7

where for perfect gases the speed of sound is related to the potential through the relation

2 J (4.6)

The Mach number ill is given by

4.1 The Small Disturbance Minimization Problem

The derivatioI_ of the small disturbance minimization problem follows 'the argument and

notation of Sec.2.1. We perform localization and set the local coordinate system on the

boundary such that the flow is in the x-direction (V_ = (_.0,0)). On the perturbed

boundary a Taylor expansion giv,_ [1]

pr,_t..,,a = p _ [_+ &p,, a. h.od.

and

da _'_'t_'_"- -- (1 - -_)da + h.o.t.

where I_ = _7 + W,, and .Rt, R2 are the principal curvatures.

The small disturbance minimization problem is giver, by

_, t_ ( (p P" &p,,)2dxdy - 5 (4.7)
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subject to

(1 - M2)_= ,- _ + ¢_,= = 0 on/R.3_. (4.8)

The small disturbance boundary condition is given by

- ¢_ - ,_&:: + O-,& -- 0 (4.9)

where the unperturbed flow is in ';he x-direction. Since we are analyzing the Hessian for the

high frequencies it is enough to consider

- ¢: = ai=&_.. (4.10)

The relation between/_ and ¢ in the cost function (4.7) is obtained from the relations (4.4-

4.6). We obtain that the relevant cost fimction in terms of d to be minimized is

4.2 The Adjoint Equations

By standard variational calculus it can be shown that the gradient of the cost function is

given by

g = _.A_ (p_ p.)2R + 2p.(p - p') i4.12)

where ,k is the solution of

(4.1:_)

with the wall boundary condition

- 2, - 2[pg):,((p- p')- pO_8.-)], = 0 or, O_ (4.1"4)

and ¢ is the solution of (4.8) with the boundary condition (4.10). We also require that the

solution is bounded for the subsonic case (M < 1) and that in the supersonic case (M > 1)

no wave,_ propagate in the direction of -V6(x0), i.e., not propagating in the ncgative x-

direction. This requirement is done so that the solution of the small disturbance problem

will be consistent with the far-field boundary conditions of the unperturbed problem.

4.3 Local Mode Analysis

We now go through the analysis in See.3 in order to compute the symbol .ft(k) (see Eq.3.19)

using the full potential state equations. Folle,ving a perturbation &

5{_) = 5(i:-)e_-_

the small disturbance solution, o. can be represented as

¢(._:)= 8(_-)_'r% '':, (_.15)

8
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and. similarly, the adjoint variable,

A(_) = J_(/_)e;t:ae I_''. (4.16)

Substitution of (4.15) in (4.8) and of (4.16) in (4.1.3) results in the following relations for

kz and for X3:

(1 - M2)k_ + k_ +/,-_ = 0 (4.17)

(1 - + + = 0. (4.18)

The_e are the analogs of equations (3.10) and (3.15) respectively.

i
z

i_iap \ r / outltolng

\/

Figure 1: The supersonic flow can be de(_)mposed into two waves: incoming and outgoing

the plane 8_.

The choice of sign for k3 and I_3 is done as follows. Since the half space problem is related

to localiza.tion of the original problem around some point z0 E F, the solutions that we

construct in half space should be compatible with the far field bound_y conditions of the

original problem. In the supersonic regime the solution can be decomposed into two waves:

incoming and outgoing of the plane On_ (see Fig. 1). In terms of the local coordinate system,

the incoming characteristic has a component in the negative y-direction while the outgoing

has a component in the positive y-direction (both propagate in the positive x-direction).

Since perturbations of the shape F can not change the far field inflow data. the change in the

incoming characteristic should vanish. Thus, the part of _ which propagates to the negative

x-direction is set to zero. This implies that k3 is of opposite sign to that of kl when k3 is

real valued (i.e. supersonic flow). The adjoint variable has characteristics in the opposite

direction and therefore we require that the part of the solution for ,_ which propagates to

the positive x-direction should be set to zero. As a result the sign of/_3 is the opposit.e of
that of k3 if they are rea.l valued. In the subsonic regime k3 and/¢3 are imaginary therefore

the proper sign is positive for both so that exponentially decaying solutions are obtained.

Therefore k3k3 = --Ik3l 2 for both subsonic and supersonic flow.

From the boundary condi6on (4.10) we obtain a relation between &(k) and _(7¢), (as in

(3.13))

= -o G6(k), (4.19)

9
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and from the boundary condition (4,14) (as in (3.18))

i(_-)= 2if,2d_d(k). (4.20)
"3

Hence. the gradient (4.12) in Fourier space is

Substitution of (4.19) in (4.20) and of (4.20) in (4.21) results in the relation

4 /¢4
,4 k, , .,,_-4 "l 5 (4.22)_(_") = 2p %-----_ - -Lf %:

_._k._ ik31_

and thus by relation (4.17) we obtain the following formula for the symbol of the Hessian:

kt
i_-)_-,2,- kli (4.23)

H(_) _ 2,4
= -p o_I(1

The Euler Equations5

As in the full pot.entiM case we consider the problem of optimizing the shape of all aerody-

namic configuration, subject to the Evler equations, such that the optimal shape minimizes

the deviation of the pressure from a target pressure distribution (4.1). Vv_ perform the anal-

ysis away" from shocks so that it can be done using a non-conservative formula.tion. The

Euler equations in quasi-linear non-conservative form are given by

c(r,_) = 0 0 Q 0 _
D Y _"

0 0 0 Q _ _,
0 pc_a_ pc_cg,j pc20, Q p

= o (.5.1)

where Q = ft. _ (fi i=_(u. _,,w) denotes the velocity vector), with the solid wall boundary
condition

z. _ = 0. (.5.2)

Additional conditions that are given at the inflow and outflow bourtdaries in terms of char-

acteristic variables are not used explicitly in the derivation of the approximate Hessian.

5.1 The Small Disturbance Minimization Problem

Following the same axgument given in Sec.4, t,he small disturbance cost function is given

_ Eq.(4.7). The state equations (5.1) are perturbed in the vicinity of the minimum and

ti;,,, perturbation variables solve the linearized Euler equations which up to low o_rder terms

are given by the same matrix operator a_ above. Following the localization and half space

10
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approximation we set the local coordinaie system on the boundary such that the flow i._ in

the x-direction (ff - (u.0,0}). The small disturbance wall boundary condition is given by

(the perrurbatioi_ variables are denoted by ,,3,_7. and/_)

- ft. = uS_ (.5..31

where we have omitted as before tile zero order terms ip_d.

5.2 The Adjoint Equations

By standard variational calculus the gradient of the cost 5motion is given by

g = -_p(x, -_c2_)_ (, _ f)2 + 2p_(p- v') (._.._)
R

where (kl. _, As) is the solution of the following system of equations in _3+.

div()q if) = 0 (5..5)

grad(pk_) _- grad(ft, k) + c_grad!pAs) = 0 {5.6)

p

The boundary condition on 0/R2 is given by

|
- -_ + 2_( v - p" ) = 0. (5.S)

P

An additional requirement is consistency with the far-field boundary conditions of the un-

perturbed problem; i.e.. the solution is bounded for the subsonic case (:1I < 1) and that no

waves propagate in the direction of -5(xo) in the supersonic case (M > 1).

NegJect, ing zero order terms in Eqs.(5.5-5.7) we arrive at the following quasi-linear form:

A2 pO_ _ 0 0 pc2a_ k_

0 pc2c3_. As = O.

L -'3 =- - 0 Qo O p_c3
A_ 0 • A4

x, o _0, _0_ ;0, A,

5.3 Local Mode Analysis

Following the same procedure as in the full potential ca_ we consider a perturbation in the

design variable of the form

&(i) = &(/_)e 'zr (5.9)

with k = (At.k2) and £ = (x,y). As a result the states and costates are perturbed by

t_-(z)= 0(_)_'__d_:" ¢._._0)

,_(i)= ,_(_)d__'¢:r" {5.11)

I1
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with (="--=(). if, P) and ._ = (),,, _, As). Introducing the notation

Q(g)--- ;-_ = ,,_'1

and

L(_. ks) = i
t Q. pkl pk2 pk3 0

o Q o o
o o _ o
o o o 0
0 pdk_ pdk2 pdk3 0

the form of the above solutions for the perturbation variables imply that

det L(_. k3) = 0

det .L(k, k3) = 0

where _ is the adjoint of i_. The two relations result in a fifth-order polynomial equation for

the wave numbers (kl. ?¢2.k3),

_,_,,_(k,_.' - _/_,,_+_._+k_))=o

with the roots

k._-- s-_=-(l-M2}k_-k_ and k,--O, (3.14)

where the J_Iach number is given by M _ --- _. Note that the roots for k_ and for _'3 are
identical to those obtained h-. the full potential case.

Let

V_(/¢)

l"2(k)
2.

v3(_')

t.'_(k)

= (klp_c-2,-kl,-t¢:, -_'3.h'Ipu)

= (Inp.c-L-_l.-k=,lq,k,p_)

= l_,0.0,0,0)

= (o,_,o,o,o)

= (O,O.-k_.k_.O)

(_.lS)

._(_)
.% --

-:(#)

_-',(g-)

= (o..-d,_,.-d_.,p.-,_,,h,_,,,.)
= (o.-c_,,_,,-_,,._,p_-,,_,,,)
= (-d,O.O_O, 1)

= (o,_,o,o,o)

= (0,0, -k_, k_, 0}.

12

(5.16}

II!
i I mill I It I II1 II i i i il_n n i iis I Z l ii I ii i ]
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rh+ vector I_',(_+)+i-'--'+(_+)1is the eigenvector of L(_,ka{_'))[_(_:,ic+{k))] with a zero eige'a-

value, the vector Pa(f:)[ff'=(_ql is the eigenvector of LC&'.-ka(_¢))[L(_',-ka(_'))] with a zero

with a zero eigenvalue. :. =

The eigenvectors which correspond 1o kl = 0, {1;3,4.._(k) _nd E3.4._(_¢)), represent waves

coming from -oc to oc., in tile half space coordinates, ,>arallel to the surface 0//_ in the

analysis problem, and from _o to -co in the adjoint problem and therefore do not play a

role in the analysis.

The eigenvectors which correspond to ka = ka(k) and ka = k.3(tc) ar_ relating changes in

the designed surface with the flow field. However, only I_1(k) and ._(/7¢) are consistent with

the far-field bound+ry conditions as discussed in Sec. 4.3.

We look for amplit udes of the vector solutions _'(k) in (5.10) and .,'_,(k)in (5.11 ) consistent

with the boundary conditions. Fzom the boundary condition of the state equation (5.3) we

get (see; (.%12) together with _ in (.5.15))

(5.17)

The boundary condition of the costa.re equation (5.8) (see (3.17) together with the definition

of E1 in (5.16)) implies

c_k3_(/_) = --2k, puS();) (5.18)

and ehe design equation (5.4) implies

 ff¢) = + (5.19)

Finally, substituting of (5.17) in (5.18) and of (5.18) in (5.19) yields

k 4

= -zp u .-£-75-= 2p2u 4
,_3'_3 I(1 -- M_)k_-+ _'_"

(5.20)

6 Analysis of the Hessian

In the previous sections the symbol for an approximate Hessian near the minimum was

obtained, namely,

ff(kl, k_) = 2p2tt+h(kl, k2) (6.1)

with

Ikt_(1 - M +) + k_!" (6.2)

The fact that the same Hessian is obtained bo_h for the full potential eq:,at, ion and for Euler

equations implies t hat for the purpose of developing new optimization algorithms it is enough

to consider the full potential equations, Although the Euler equatioas presents axtditional

difficuh,ies compared with the full potential equation for the analysis problem no additional

ones exist as far as the optimization is concerned.

13
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The Hessian's symbol in the discrete space can be obtained in an analog way. The result

will then depend on the specific discretization we use to solve the equations. One can get

a crude approximation of the discrete Hessian by replacing the wave number kl with the

discrete wave number 01 {and k2 with 02).

where (hi, h2} are lhe mesh-sizes in the (z: y) directions respectively.

6.1 Two Dimensions

In two dimensions the x2 direction does not exist and thus in _,he Fourier space we set k2 = 0

in Eq.(6.2) resulting in

h(kl) = I1- M I" (6.3)

Substitution of/q =: _- in (6.3) implies that the condition number of the Hessian scales with
1"

the grid mesh-si_ as O(U}. Thus, the Hessian is ill-conditioned and its condition number

increases quadratically" in the discretization parameter as the grid is refined. Therefore, a

good estimate of the Hessian is required to obtain a fast convergence of the optimization

process.

6.2 'Three Dimensions

In three dimensions the properties of the Hessian are determined by

h(k.,,l,-,)=

For fixed wave number in the stream direction, kl = coast, the symbol approaches zero

as the wave number L'2 approaches infinity..q'his means that the cost function is nearly

flat with respect to perturbations in the shape which are highly oscillatory in the direction

perpendicular to the flow. This might explain recev.t numerical results showing that the

wing surface is likely to develop oscillations in the spanwise direction [9] . Note that the

above oscillations do not appear in the 2D problem which indicates that the 3D aerodynamic

optimal shape design is inherently a more difficult problem than the 2D problem.

7 Regularization

As discussed in $ec.6.2 the three dimensional problem is ill-posed and as a result oscillations

are' expected to appear in the direction perpendicular to that of the flow. In order to

eliminate this phenomenon it is necessary either to penalize the cost function or Mternatively
to represent the shape as a f;nite sum ,_f base fianctions which are smooth in the direction

perpendicular to that of the flow (roughly the spanwise direction).

14
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In this section we propose a natural penalty of the cost function which will prevent, tile

oscillalions without increasing the computational cost of the preconditioner. The penalty

term has the following form,

F, ---_Jr(T_)_da (7.1)
#

where _ is a positive parameter and T is an operator whose symbol is

Ik_(1- m2) 4 k_l"

This r_ults in a modified He.inn given by

_'_ (7.2)

which reaches asymptotically a constant as k2 increases, for fixed value of kl. Thus, for large
values of Ik,l+ ]kzl we have ]H(kl,k2)] _> 6 > 0 for some positive b, which implies that_

for the modified problem the high frequency perturbations in the shape are well beho, ved.

As the shape 1" converges to the minimum, q can be decreased, resC, ting in a solution

which is regularized in the direction perpendicular to I_he flow. The implementation of the

regularization is discussed in t.he nex_o section.

8 Preconditioning

In Sec.6 we concluded that aerodynamic optimization are ill-conditioned problems. Therefore

having second order information is crucial for effective convergence. However. t.he explicit

solution of a Newton step, Ha = -g, requires to compute the Hessian, H, explicitly and '_hen

to invert it. This will become practically impossible for a realistic aerodynamic optimization

problem computed numerically on a fine mesh and having a large number of design variables.

Using low rank quasi-Newton methods, such as BFGS, will deteriorate as the number of

design variables increases. We therefore suggest, to approximate the Newt, on step in the

differential level (infinite dimension), using the Hessian's symbol, and then to project the

result onto the finite dimensional design space which is used ]n practice,

The equa, tion defining lhe Newton direction, for c_. in Fourier space is given by

//(k,. k2)a(k_.A-_)= -_(k_, ,_-_)

or explicitly by using the gymbol (6.1)

('2p2,;_k_-4-2,_k._)6(k,,k2)= -Ik_(1 - m 2)+ k_l._(k,,_). (8.1)

The symbol in the right hand side of equation (8.1) correspotlds to a non-local operator in

the real space. The term which multiplies r/ accounts for the regularization penalty term

discussed in the previous section (r/should be ,,tet to zero in two dimensional problems_
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8.1 Preconditioner for the Small Disturbance Problem

Using the relation between k3, kl and A'z,

' _" -(ik: )(iks),{k_(1-M 2)÷ _!=

we arrive at

(2p_u4k_ + 2r/k_)f(k,.. k2) - (ik3)(i_'3)_(k,, k2). (s.2)

This implies the following equation in real space.

• z 4t_ 0z5 _
(s.3)

The terms which multiply p are added both to ensure a unique solution to Eq.(8.3) and

to account for the low-frequencies. Note that Eq.(8.2) is a good approximation for the

,,ymbol of the Newton equation only in the high-frequencies. In the low-frequencies the

(erms multiplying g, in F,q.($.3), are dominant and result in a steepest descent step, while in

the high-frequency regime they diminish and a Quasi-Newton step is taken. The term t_'(_)

satisfies the following coupled PDE system

('I- M_)i,_'2-,Z(')+ ,f,i__) = o o,__ (s.4)

51,) O_,(z)
= -O--T on 0/_+ (s.5)

z ,(zj_ 5(2)_ 5(_,= 0 on//¢_. (8.6)(t --U ),:=: .uu --::

V(_)= # onO_+. (s.7)

%e also require that the solution be bounded and that in the supersonic regime (M > 1) no

waves propagate in the positive x-direction in E;q.(8.5) and that no waves propagate in the

negative x-direction in Eq.(8.7). Note that the operator T in £2t.(7.1 ) need not be explicitly

evaluated. By adding the r/term in (8.2) and solving Eqs.(8.3-8.7) we account for such an

operator. A similar precondi_ioner can be derived for the small disturbance Euler equations.

8.1,1 Purely Subsonic Flow

In a purely subsonic flow it is unnecessary to go through the above procedure since

lk,2(1 - M;)-"./'_l= k,2(l- .a,,")--:k_.

Therefore the following PDE should be solved on F only:

22u404c_ ,) O_d _.02q Oq_g
P a_ - "'_ '--_ -=(1- i )_x.. -- + _g. (8.s)8"_y

16
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8.2 Practical Implementation

In practice equation,s (8.4-8.7) are replaced by full potently] equations defined on the domain

f_ as shown in the following. Let _ be the solution of the full potential equation (4.2). We

define

where e << I. We claim that t,he preconditioning equation for 6 is given by

2:(v_ v)_- _(_'.v)_. _a=-!--° (:,- _).,
cgn

on I', (8.9)

where _"is a unit vector perpendicular to V_ and to ff (roughly in the spanwise direction):

× _'= a. The function e m is the solution of the following coupled PDE system:

Vp(_(_))V_,(')= 0

_,,(_)= -_ O;,(2)_ _) +

onfl

._ ¢n F (8.10)

on 8ft - F

Vp(_(2))V_ (2) -" 0 O_ Q

Ip(_')= _g 4-_ on F

_,:(2)= _ on 8Cto:

(8.11)

where aDol stands for the far field outflow boundary. The .solution: 6, of Eq.(8.9-8.11) is the

preconditioned search direction to be used in optimization algorithms. This search direction

will avoid oscillations in the shape in the direction perpendicular to the flow and will require

many fewer optimization steps to solve the problem. For the Euler equations an analog of

E;qs.(8.10-8.11) can be derived using the corresponding small disturbance preconditioner.

8.3 Implementation in a Finite Dimensional Design Space

In a finite dimensional subspace we replace 6 in Eq.(8.9) by (see (2.15))

N

&(_) = _ fi'a.fj(._).
.,,--I

We then take the inner product of Eq.(8.9) with f_ for k = 1... N, resulting in a linear set
of equations for a_:

(h + t,/)g, = -b+ ,G (8.12)

where I is the unit matri× and # is a positive parameter, as in Eq.(8.3). h is an A" × N

matrix in which an element h u is given by

=(,,:. _ .,,.>.
17
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is the finite dimensional design variable gr = (51..'-, &.'_O, and an element in the right

hand side vector, b, is given by

c L_(F)

The .solution of Eq.(8.12) is the preconditioned search direction replacing (g_,--. ,gx).

9 Conclusions

In this work new local mode analysis for cptimal shape design problems which are governed

by PDEs was developed. The analysis was applied to aerodynamic shape opf, imiz_tion

problems governed by the full potential and the Euler equations. The analysis was done in the

infinite dimensional design space where arbitrary changes in the wing;s shape, in the normal

direction, are allowed during the course of optimization. In this case the Hessian is an infinite

dimensional operator defined on a space of functions and its eigenvalne distribution served to

study the well-posedness of the optimization problem a,s well as for deriving preconditioners

to accelerate the numerical convergence of gradient based methods. In practice, however, a

finite dimensional design sp_e is commonly used for which the Hessian is a finite dimensional

matrix. The application of the infinite dimensional analysis to finite dimension was obtained

by a simple project ion.

The analysis is local and uses freezing the coefficient to obtain a problem in half space with

constant coefficients, where Fourier techniques _re employed. The eigenvalue distribution

of the ttessian is a.nalyzed by computing its Fourier symbol. I: was shown that for two

dimensional flow the Hessian is a second order differential operatoi ,efined on the designed

boundary. In three dimension the Hessian is a pseudodifferential operator (non-local) and its

properties are much more complex. For both the full potential and Euler flow the symbols

of the Hessian are identical. Therefore_ the complexity of the optimization problems is the

same for both, although the analysis problem for the Euler equations is more difficult.

The symbol of the Hessian implies that the three'dimensional problems are ill-posed, and

arbitrary oscillations in the shape can develop in the direction perpendicular to that, of the

flow (roughly the spanwise direction), This explains recent numerical results showing th;tt

the wing surface is highly oscillatory in the spanwise direction [9] . A regularization that

involves smoothing only in that direction was introduced and analyzed. Also note that if

the problem were to minimize, drag. rather then matching the pressure distribution, *.hen

osci!latioas in the spanwise direction are not likely to appeax since they will increase the

surfaxe area of the wing resulting in an increase in the drag.

The explicit form of the symbol of the Hessian also implies that these minimization

problems are ill-conditioned and their condition number increases quadratically with the

dimension of the design space. Therefore gradient descent method will be inefficient and

second-order information., by approximating the Hessian (or its inverse), is essential for fast

convergence. However, low rank quasi-Newton methods, such as BFGS, will deteriorate

as the number of design variables increases. New preconditioners which approximate the

inverse of the Hessian are proposed. Their numerical implementation will be present, ed

18
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elsewhere. These preconditioners are of low computational complexity for two-dimensional

flow and for purely subsonic flows in three dimensions. In non-subsonic three-dimensional

flow the preconditioning involves the solution of the full potential equation twice per each

optimization step, though a substantial decrease in the number of optimization steps required

to reach the minimum is anticipated. The preconditioning of the suggested regu]arization

is straightforward and requires negligible additional computational work. In case a finite

dimensional design space is used the preconditioning requires the solution of a linear set of

equations.

Applications of similar analysis to aeroelastic optimization are discussed in [18!.
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